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Abstract. We perform a comprehensive analysis of the decays of charginos and neutralinos in the minimal
supersymmetric standard model where the neutralino χ0

1 is assumed to be the lightest supersymmetric
particle. We focus, in particular, on the three-body decays of the next-to-lightest neutralino and the lightest
chargino into the lightest neutralino and fermion–antifermion pairs and include vector boson, Higgs boson
and sfermion exchange diagrams, where in the latter contribution the full mixing in the third generation is
included. The radiative corrections to the heavy fermion and SUSY particle masses will also be taken into
account. We present complete analytical formulae for the Dalitz densities and the integrated partial decay
widths in the massless fermion case, as well as the expressions of the differential decay widths including
the masses of the final fermions and the polarization of the decaying charginos and neutralinos. We then
discuss these decay modes, in particular in scenarios where the parameter tan β is large and in models
without universal gaugino masses at the grand unification scale, where some new decay channels, such as
decays into gluinos and qq̄ pairs, open up.

1 Introduction

In the minimal supersymmetric standard model (MSSM)
[1,2], the lightest neutralinos χ0

1, χ
0
2 and chargino χ±

1 ,
which are mixtures of the higgsinos and gauginos that
are the spin 1/2 partners of the Higgs and gauge bosons,
are expected to be the lightest supersymmetric particles.
In particular, the neutralino χ0

1 is the lightest SUSY par-
ticle (LSP), which because of R-parity conservation [3], is
stable and invisible. In models where the gaugino masses
are unified at the grand unification scale [4], the masses of
these particles are such that mχ0

2
∼ mχ±

1
∼ 2mχ0

1
in the

case where they are gaugino-like or mχ0
2

∼ mχ±
1

∼ mχ0
1

in the case where they are higgsino-like. Thus, the states
χ0

2 and χ+
1 are not much heavier than the LSP and might

be the first SUSY particles to be discovered. The search
for these sparticles is a major goal of present and future
colliders, and the detailed study of their production and
decay properties is mandatory in order to reconstruct the
SUSY Lagrangian at the low-energy scale and to derive
the structure of the theory at the high scale.

The decays of charginos and neutralinos have been
widely discussed in the literature [5]. If the mass split-
ting between the LSP and the next-to-lightest neutralino
χ0

2 or the lightest chargino χ±
1 is larger than MZ or MW ,

the particles will decay into massive gauge bosons and the
neutralino χ0

1. If not, the decays will occur through vir-
tual gauge boson and scalar fermion exchanges, leading
in the final state to the LSP neutralino and a fermion–

antifermion pair. Recently, it has been realized [6–9] that
for large values of the parameter tanβ, the ratio of the
vacuum expectation values of the two doublet Higgs fields
which are needed to break the electroweak symmetry in
the MSSM, the Yukawa couplings of third generation
down-type fermions (b-quarks and τ -leptons), which are
strongly enhanced, lead to dramatic consequences for the
decays of these particles1. Indeed, the virtual exchanges
of, on the one side, Higgs particles (because the Higgs bo-
son couplings to b-quarks and τ -leptons are proportional
to tanβ) and, on the other side, of third generation down-
type sfermions (which tend to be lighter than the other
sfermions in this case) become very important.

Furthermore, some attention has recently been devoted
to models where the gaugino masses are not unified at the
GUT scale, as might be the case in a large class of four-
dimensional string models [12] or in the so-called anomaly-
mediated SUSY-breaking models [13]. As an example, two
particular cases have been discussed in [14], where SUSY-
breaking occurs via an F -term that is not an SU(5) singlet
and in an orbifold string model. In these models the gaug-
ino masses at the electroweak scale can be very different

1 Note that the scenario with tanβ ∼ mt/mb is favored in
models with Yukawa coupling unification at the GUT scale
[10]. In addition, large tanβ values, tanβ � 3–8 depending on
the details of the radiative corrections, are needed to maximize
the lightest h-boson mass in the MSSM, to cope with the LEP2
experimental bound Mh � 113.5GeV [11] in the decoupling
regime where the h boson is standard model-like
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from the pattern mentioned above. In particular, the χ0
2

and χ±
1 masses can be closer to the LSP mass in some of

these models, favoring the occurrence of three-body de-
cays of the light chargino and neutralino states (including
some new channels such as χ0

2 → qq̄+gluino final states),
while possibly disfavoring final states with heavy fermions
(such as bb̄ final states) and therefore dramatically affect-
ing the decay branching ratios.

In this paper, we perform a detailed investigation of
the three-body decay modes of charginos and neutralinos
in the MSSM, focusing on the scenarios with large values
of tanβ and with non-unified gaugino masses at the GUT
scale. We will provide complete analytical formulae for the
Dalitz densities of the decays (in terms of the energies of
the two final state fermions) and for the fully integrated
partial decay widths. Furthermore, we will take into ac-
count the polarization of the decaying particle, which is
needed in order to obtain the full correlations between the
initial state in the production of these particles and the
final states in their decays. We will also include the depen-
dence on the masses of the final state fermions to have a
more accurate prediction for final states involving b-quarks
and τ -leptons (especially in scenarios where the mass dif-
ference between the decaying particles and the LSP is not
very large) and to treat properly the case of heavy top
quark final states. An important ingredient of the anal-
ysis will be the inclusion of the effects of the radiative
corrections to the heavy fermion and chargino/neutralino
masses, which will be shown to have a large impact.

This work extends the recent analyses made in [6–8]
for chargino and neutralino decays, and completes our
analyses of the higher order decays of SUSY particles
(sfermions, in particular stops and sbottoms, and gluinos)
in the MSSM [9,15].

This paper is organized as follows. In the next section,
we will summarize the main features of the chargino, neu-
tralino, sfermion and Higgs sectors of the MSSM which
will be needed in our analysis. In Sect. 3, we will display
the analytical expressions of the (unpolarized) Dalitz den-
sities and the integrated partial three-body decay widths
for massless final state fermions. Section 4 will be devoted
to our numerical analysis and a short conclusion will be
given in Sect. 5. In the appendix, we present the complete
formulae for the partial decay widths, including the finite
mass of the fermion final states and the polarization of the
decaying charginos and neutralinos.

2 SUSY particles masses and couplings

To fix our notation, we will summarize in this section
the main features of the chargino, neutralino, sfermion
and Higgs sectors of the MSSM. We will then give, for
completeness, all the couplings of these SUSY particles
(i.e. couplings of the neutralinos and charginos to gauge
and Higgs bosons and their couplings to fermion–sfermion
pairs) as well as the couplings of MSSM Higgs and gauge
bosons to fermions, which will be needed later when eval-
uating the two-body and three-body partial decay widths.

2.1 Masses and mixing

2.1.1 The chargino and neutralino systems

The general chargino mass matrix, in terms of the wino
mass parameter M2, the higgsino mass parameter µ and
tanβ, is given by [16]

MC =

[
M2

√
2MW sβ√

2MW cβ µ

]
, (2.1)

where we use sβ ≡ sinβ, cβ ≡ cosβ, etc. It is diagonalized
by two real matrices U and V ,

U∗MCV
−1 → U = O−

and

V =

{
O+, if detMC > 0,
σ3O+, if detMC < 0,

(2.2)

where σ3 is the Pauli matrix to make the chargino masses
positive and O± are rotation matrices, with angles given
by

tan 2θ− =
2
√
2MW (M2cβ + µsβ)
M2

2 − µ2 − 2M2
W cβ

,

tan 2θ+ =
2
√
2MW (M2sβ + µcβ)
M2

2 − µ2 + 2M2
W cβ

. (2.3)

This leads to the two chargino masses:

m2
χ±

1,2
=

1
2

{
M2

2 + µ2 + 2M2
W ∓

[
(M2

2 − µ2)2 (2.4)

+ 4M2
W (M2

W c
2
2β +M2

2 + µ2 + 2M2µs2β)
]1/2}

.

In the limit |µ| 
 M2,MW , the masses of the two
charginos reduce to

mχ±
1

�M2 − M2
W

µ2 (M2 + µs2β) ,

mχ±
2

� |µ| + M2
W

µ2 εµ (M2s2β + µ) , (2.5)

where εµ is for the sign of µ. For |µ| → ∞, the light-
est chargino corresponds to a pure wino state with mass
mχ±

1
� M2, while the heavier chargino corresponds to a

pure higgsino state with a mass mχ±
2
= |µ|.

In the case of the neutralinos, the four-dimensional
neutralino mass matrix depends on the same two mass pa-
rameters µ and M2, if the GUT relation M1 = (5/3) tan2

θW, M2 � (1/2)M2 [16] is used. In the (−iB̃,−iW̃3, H̃
0
1 ,

H̃0
2 ) basis, it has the form (c2W = 1 − s2W =M2

W /M
2
Z ]

MN =




M1 0 −MZsW cβ MZsW sβ
0 M2 MZcW cβ −MZcW sβ

−MZsW cβ MZcW cβ 0 −µ
MZsW sβ −MZcW sβ −µ 0


 .

(2.6)
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It can be diagonalized analytically [17] by a single real
matrix Z. The expressions of the masses mχ0

i
are rather

involved. In the limit of large |µ| values, they however
simplify to [18]

mχ0
1

� M1 − M2
Z

µ2 (M1 + µs2β) s2W ,

mχ0
2

� M2 − M2
Z

µ2 (M2 + µs2β) c2W ,

mχ0
3

� |µ| + 1
2
M2

Z

µ2 εµ(1 − s2β)
(
µ+M2s

2
W +M1c

2
W

)
,

mχ0
4

� |µ| + 1
2
M2

Z

µ2 εµ(1 + s2β)

× (µ−M2s
2
W −M1c

2
W

)
. (2.7)

Again, for |µ| → ∞, two neutralinos are pure gaugino
states with masses mχ0

1
� M1, mχ0

2
= M2, while the two

others are pure higgsino states, with massesmχ0
3

� mχ0
4

�
|µ|. The matrix elements of the diagonalizing matrix, Zij

with i, j = 1, ..., 4, are given by

Zi1 =

[
1 +

(
Zi2

Zi1

)2

+
(
Zi3

Zi1

)2

+
(
Zi4

Zi1

)2
]−1/2

Zi2

Zi1
= − 1

tan θW

M1 − εimχ0
i

M2 − εimχ0
i

Zi3

Zi1
=
{(
µ(M1 − εimχ0

i
)(M2 − εimχ0

i
)

−M2
Zsβcβ [(M1 −M2)c2W +M2 − εimχ0

i
]
)

/(
MZ(M2 − εimχ0

i
)sW [µcβ + εimχ0

i
sβ ]
)}

Zi4

Zi1
=
{(

− εimχ0
i
(M1 − εimχ0

i
)(M2 − εimχ0

i
)

−M2
Zc

2
β [(M1 −M2)c2W +M2 − εimχ0

i
]
)

/(
MZ(M2 − εimχ0

i
)sW [µcβ + εimχ0

i
sβ ]
)}
, (2.8)

where εi is the sign of the ith eigenvalue of the neutralino
mass matrix, which in the large |µ| limit are: ε1 = ε2 = 1
and ε4 = −ε3 = εµ. Note that we will often use the rotated
Zij matrix elements:

Z ′
i1 = Zi1cW + Zi2sW , Z ′

i2 = −Zi1sW + Zi2cW ,

Z ′
i3 = Zi3, Z ′

i4 = Zi4 . (2.9)

We will not only discuss the chargino and neutralino spec-
trum in mSUGRA-type models, where the gaugino masses
are unified at the GUT scale MGUT, but also when the
boundary conditions at this high scale are different. For
illustration, we focus on two scenarios discussed in [14]:
(i) Models in which SUSY-breaking occurs via an F -term
that is not SU(5) singlet but belongs to a representation
which appears in the symmetric product of two adjoints:
(24⊗24)sym = 1⊕24⊕75⊕200 (where only model 1 leads
to the universal gaugino masses discussed previously).

Table 1. Relative gaugino masses at MGUT(MZ) in the FΦ

representations and the OII model

FΦ M3 M2 M1

1 1(∼ 6) 1(∼ 2) 1(∼ 1)
24 2(∼ 12) −3(∼ −6) −1(∼ −1)
75 1(∼ 6) 3(∼ 6) −5(∼ −5)
200 1(∼ 6) 2(∼ 4) 10(∼ 10)

OII 1(∼ 6) 5(∼ 10) 53/5(∼ 53/5)

(ii) The OII model which is superstring motivated and
where the SUSY-breaking is moduli-dominated.

The relation between the gaugino masses at the scale
MGUT, m1,2,3, and at the weak scale O(MZ), M1,2,3, are
approximately given by the relation [19]:

M1 � 0.42m1, M2 � 0.83m2, M3 � 2.6m3, (2.10)

leading to the well known hierarchy M1 : M2 : M3 =
1 : 2 : 6 for a universal gaugino mass at the GUT scale,
m1 = m2 = m3 = m1/2, as in mSUGRA-type models. The
relative gaugino masses at MGUT and at the low-energy
scaleMZ are given in Table 1; see also [14]. The pattern for
the neutralino and chargino masses can be quite different
from the universal case 1. In particular, for large values of
the parameter µ, the LSP is wino-like in the scenario 200
where M2 < M1, implying that χ0

1 and χ+
1 are degenerate

in mass. In the scenario 75, the gauginos χ0
1, χ

0
2 and χ+

1
have masses which are very close since |M1| ∼ |M2|, while
in scenario 24, the mass splitting between the LSP and
the states χ0

2, χ
+
1 can be very large. In the OII model

and if no large loop corrections are present to increase the
gluino mass compared to the value of M3 < M1,M2 (to
avoid the scenario with a gluino LSP), χ0

1, χ
0
2 and χ+

1 have
to be higgsino-like and can be thus degenerate in mass.

Since χ0
2 and χ+

1 can be degenerate in mass with the
LSP in some of these scenarios, it is important to include
the radiative corrections to the masses. These corrections
are quite involved [20]. Here we will work in two differ-
ent approximations, which are valid in the (almost) pure
gaugino and pure higgsino regions [21,22] and which re-
produce the complete result to better than a few percent.

For gaugino-like neutralinos and charginos, |µ| 
M1,
M2,MZ , we will correct only the parameters M1,M2 in
the chargino and neutralino mass matrices (which means
that terms of O(α/4π × M2

Z/µ
2) are neglected); we as-

sume that all fermions are massless and all squarks and
sleptons are degenerate, with masses mq̃ and ml̃, respec-
tively; furthermore, we work in the tree-level decoupling
limit for the Higgs sector, where Mh ∼ MZ and MH ∼
MH+ ∼ MA (see Sect. 2.1.3). For the gluino mass, mg̃ =
M3 + ∆M3/M3, needed in order to compare to the LSP
mass, we will include only the dominant QCD corrections.

In this limit, one then obtains for ∆M1,2,3/M1,2,3 [21]:

∆M1

M1
= − α

4πc2W

{
11B1(M2

1 , 0,mq̃) + 9B1(M2
1 , 0,ml̃)

− µ

M1
s2β [B0(M2

1 , µ,MA) −B0(M2
1 , µ,MZ)]
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Fig. 1a–d. The masses of χ0
2 and χ±

1 and their mass differences
with the LSP χ0

1 as a function of µ, for tanβ = 50 and M2 =
150GeV with the M1 values given in Table 1

+ B1(M2
1 , µ,MA) +B1(M2

1 , µ,MZ)
}
, (2.11)

∆M2

M2
= − α

4πs2W

{
9B1(M2

2 , 0,mq̃) + 3B1(M2
1 , 0,ml̃)

− µ

M2
s2β [B0(M2

2 , µ,MA) −B0(M2
2 , µ,MZ)]

+ B1(M2
2 , µ,MA) +B1(M2

2 , µ,MZ) (2.12)
− 8B0(M2

2 ,M2,MW )

+ 4B1(M2
2 ,M2,MW )

}
,

∆M3

M3
=

3αs
2π

{
2B0(M2

3 ,M3, 0) −B1(M2
3 ,M3, 0)

− 2B1(M2
3 , 0,mq̃)

}
, (2.13)

with the finite parts of the Passarino–Veltman two-point
functions B1 and B0 given by [23]

B0(q2,m1,m2)

= −Log
(
q2

Q2

)
− 2 − Log(1 − x+) − x+Log(1 − x−1

+ )

−Log(1 − x−) − x−Log(1 − x−1
− )

B1(q2,m1,m2)

=
1
2q2

[
m2

2

(
1 − log

m2
2

Q2

)
−m2

1

(
1 − Log

m2
1

Q2

)

+(q2 −m2
2 +m

2
1)B0(q2,m1,m2)

]
, (2.14)

with Q2 denoting the renormalization scale and

x± =
1
2q2

(
q2 −m2

2 +m
2
1

±
√
(q2 −m2

2 +m
2
1)2 − 4q2(m2

1 − iε)

)
. (2.15)

For higgsino-like χ0
1, χ

0
2 and χ+

1 particles, |µ| � M1,2, we
will follow the approach of [22] and only correct the hig-
gsino entries in the neutralino mass matrix and include
the dominant Yukawa corrections to the light chargino and
neutralino masses, due to stop/top and sbottom/bottom
loops2. The masses in the higgsino limit [22] are then given
by (we keep the sign of the eigenvalues):

mχ±
1

� |µ+ δC |
[
1 − M2

W s2β
M2(µ+ δC)

]
(2.16)

mχ0
1,2

� ∓(µ+ δC) − M2
Z

2
(1 ∓ s2β)

(
s2W
M2

1
+
c2W
M2

2

)
+ δN ,

with

δC =
−3αµ
8π

[
λ2
t

(
B1(µ2,mt,mt̃1

) +B1(µ2,mt,mt̃2
)
)

+ λ2
b

(
B1(µ2,mb,mb̃1

) +B1(µ2,mb,mb̃2
)
)]
,

δN =
−3α
8π

[
λ2
tmts2θt

(
B0(µ2,mt,mt̃1

) −B0(µ2,mt,mt̃2
)
)

+ λ2
bmbs2θb

(
B0(µ2,mb,mb̃1

) −B0(µ2,mb,mb̃2
)
)]
,

(2.17)

where θt,b are the mixing angles in the stop and sbottom
sectors (to be discussed in the next subsection) and λt,b
are the reduced Yukawa couplings of the t, b-quarks, which
in terms of the running masses (also to be discussed in the
next subsection) are given by

λb =
mb√

2MW sW cβ
, λt =

mt√
2MW sW sβ

. (2.18)

The χ±
1 and χ0

2 masses as well as the mass differences
mχ±

1
−mχ0

1
andmχ0

2
−mχ0

1
are shown in Fig. 1 as a function

of µ for tanβ = 50, in the five models discussed above.
The wino mass parameter is fixed at M2 = 150GeV and
the parameter M1 is obtained from M2 as in Table 1. We
see that the mass difference between the lightest chargino
and the LSP can be very small3 in models OII and 200,
even after the inclusion of the radiative corrections. In
model 75, the next-to-lightest neutralino and the lightest

2 We will further approximate the δC correction by δ34 in
[22], which would be the case for almost degenerate squarks;
the difference is negligible in general

3 The search for charginos and neutralinos, which are almost
degenerate in mass with the LSP, can be done in e+e− col-
lisions, either via a search of almost stable particles or by a
search of multi-pion final states with a large amount of miss-
ing energy; see for instance [24]. At hadron colliders, the direct
search of such states will be very difficult, if possible at all
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chargino can be degenerate in mass with the LSP for small
values of µ, and the mass difference hardly exceeds 20GeV
(for the chosen value of M2) even for large µ values. Note
that for values µ � M3, the gluino is lighter than the
lightest neutralino χ0

1 in model OII.

2.1.2 The sfermion system

The sfermion system is described, in addition to tanβ and
µ, by three parameters for each sfermion species: the left-
and right-handed soft SUSY-breaking scalar masses mf̃L

and mf̃R
and the trilinear couplings Af . In the case of the

third generation scalar fermions, the mixing between left-
and right-handed sfermions, which is proportional to the
mass of the partner fermion, must be included [25]. The
sfermion mass matrices read

M2
f̃
=

(
m2

f +m2
LL mf Ãf

mf Ãf m2
f +m2

RR

)
,

with

m2
LL = m2

f̃L
+ (If3 − efs2W )M2

Zc2β ,

m2
RR = m2

f̃R
+ efs2WM

2
Zc2β ,

Ãf = Af − µ(tanβ)−2If
3 , (2.19)

where If3 and ef are the weak isospin and electric charge
of the sfermion f̃ , and s2W = 1 − c2W ≡ sin2 θW. They
are diagonalized by 2 × 2 rotation matrices of angle θf ,
which turn the current eigenstates, f̃L and f̃R, into the
mass eigenstates f̃1 and f̃2; the mixing angle and sfermion
masses are then given by

sin 2θf =
2mf Ãf

m2
f̃1

−m2
f̃2

, cos 2θt =
m2

LL −m2
RR

m2
f̃1

−m2
f̃2

, (2.20)

m2
f̃1,2

= m2
f +

1
2

[
m2

LL +m2
RR

∓
√
(m2

LL −m2
RR)2 + 4m2

f Ã
2
f

]
. (2.21)

The mixing is very strong in the stop sector for large values
of Ãt and makes the lightest t̃1 much lighter than the other
squarks and possibly even lighter than the top quark itself.
For large values of tanβ and µ, the mixing in the sbottom
and stau sectors can be also very strong, Ãb,τ ∼ −µ tanβ,
leading to lighter b̃1- and τ̃1-states.

Since the fermion masses provide one of the main in-
puts for sfermion mixing, it is important to include the
leading radiative corrections to these parameters [26], in
particular those due to strong interactions. The fermion
masses which have to be used in the mass matrices (2.19)
are the masses m̂f (Q2), evaluated in the DR scheme at
the scale Q and which, in terms of the pole masses mf ,
are given by [21]

mf = m̂f (Q2)
(
1 +

∆mf

mf

)
. (2.22)

In the case of top quarks, it is sufficient to include the
one-loop QCD corrections originating from standard gluon
exchange (first term) and gluino–stop exchange (second
term):

∆mt

mt
=
αs
3π

[
3 log

(
Q2

m2
t

)
+ 5
]

(2.23)

− αs
3π

[
B1(mg̃,mt̃1

) +B1(mg̃,mt̃2
)

− s2θt

mg̃

mt
(B0(mg̃,mt̃1

) −B0(mg̃,mt̃2
))
]
,

where in terms of M = max(m1,m2), m = min(m1,m2)
and x = m2

2/m
2
1, the two Passarino–Veltman functions

[23] B0,1(m1,m2) ≡ B0,1(0,m2
1,m

2
2) simply read in this

limit

B0(m1,m2) = − log
(
M2

Q2

)
+ 1 +

m2

m2 −M2 log
(
M2

m2

)

B1(m1,m2) =
1
2

[
− log

(
M2

Q2

)
+

1
2
+

1
1 − x

+
log x

(1 − x)2 − θ(1 − x) log x
]
. (2.24)

In the case of bottom quarks, the first important correc-
tion which has to be included is the one due to standard
QCD corrections and the running from the scalemb to the
high scale Q. The DR b-quark mass (for the NNLO cor-
rections, we assume that the correction in the MS and DR
schemes are the same, since the latter is not yet available)
is given by [27]:

m̂b(Q2) = m̂b(m2
b)c[αs(Q

2)/π]/c[αs(m2
b)/π], (2.25)

with

m̂b(m2
b) = mb

[
1 +

5
3
αs(m2

b)
π

+ 12.4
α2
s(m

2
b)

π2

]
, (2.26)

c(x) = (23x/6)12/23[1 + 1.175x+ 1.5x2],
for Q2 < m2

t ,

c(x) = (7x/2)4/7[1 + 1.398x+ 1.8x2],
for Q2 > m2

t . (2.27)

After this, one has to include the sbottom–gluino and the
stop–chargino corrections which are the most important
ones [21], in particular for large tanβ and µ values:

∆mb

mb
= −αs

3π

[
B1(mg̃,mb̃1

) +B1(mg̃,mb̃2
)

− s2θb

mg̃

mb
(B0(mg̃,mb̃1

) −B0(mg̃,mb̃2
))
]

− α

8πs2W

mtµ

M2
W sin 2β

s2θt [B0(µ,mt̃1
) −B0(µ,mt̃2

)]

− α

4πs2W

[
M2µ tanβ
µ2 −M2

2
(c2θt

B0(M2,mt̃1
)

+ s2θt
B0(M2,mt̃2

)) + (µ↔M2)

]
. (2.28)
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For the τ -lepton mass, the only relevant corrections to
be included are those stemming from chargino–sneutrino
loops, and which simply read

∆mτ

mτ
= − α

4πs2W

M2µ tanβ
µ2 −M2

2
[B0(M2,mν̃τ

) −B0(µ,mν̃τ
)] .

(2.29)

The effect of the radiative corrections is shown in Fig. 2
for the case of the bottom quark and tau lepton masses for
tanβ = 50 as a function of µ for the various models with
and without unification of the gaugino masses at MGUT.
The wino mass is fixed at M2 = 150GeV and M1,M3 �
mg̃ at the weak scale are given in Table 1. The main cor-
rection to the DR bottom quark mass, m̂b(M2

Z) ∼ 3GeV,
is due to the SUSY–QCD corrections from gluino–sbottom
loops in the case of large values of tanβ and µ. This cor-
rection is proportional to∆mb ∼ −(αs/π)×tanβµmg̃/m

2
b̃

and can increase or decrease (depending on the sign of µ]
the b-quark mass by more than a factor of two. The effect
of the radiative corrections is less drastic in the case of
the τ -mass since the latter are of the order a few percent.

Let us now discuss the dependence of the sfermion
masses on the gaugino masses as well as on the param-
eters µ and tanβ, in models with a universal mass m0 for
the scalar fermions at the scale MGUT, but without the
gaugino mass unification assumption m1,2,3 = m1/2. In
the case of the partners of the light fermions (including
b-quarks), one can neglect to a good approximation the
effect of the Yukawa couplings in the one-loop renormal-
ization group evolution of the soft SUSY-breaking scalar
masses. With the notation of the first generation, one then
obtains, when including theD-terms, the following expres-
sions [19]:

m2
ũL

= m2
0 + 5.8m2

3 + 0.47m2
2 + 4.2 × 10−3m2

1

+ 0.35M2
Z cos 2β,

m2
d̃L

= m2
0 + 5.8m2

3 + 0.47m2
2 + 4.2 × 10−3m2

1

− 0.42M2
Z cos 2β,

m2
ũR

= m2
0 + 5.8m2

3 + 6.6 × 10−2m2
1 + 0.16M2

Z cos 2β,

m2
d̃R

= m2
0 + 5.8m2

3 + 1.7 × 10−2m2
1 − 0.08M2

Z cos 2β,

m2
ν̃L

= m2
0 + 0.47m2

2 + 3.7 × 10−2m2
1 + 0.50M2

Z cos 2β,

m2
ẽL = m2

0 + 0.47m2
2 + 3.7 × 10−2m2

1 − 0.27M2
Z cos 2β,

m2
ẽR = m2

0 + 0.15m2
1 − 0.23M2

Z cos 2β. (2.30)

One has then, in the case of sbottoms and staus, to include
the mixing since in this case, large enough off-diagonal
elements of the mass matrices are obtained for large µ and
tanβ values (the effect of the trilinear couplings plays only
a marginal role).

The squark masses are governed by the parameter m3,
while the slepton masses are governed by the parameter
m2, and to a lesser extent m1. Figures 3a,b show the vari-
ation of the soft parameters mb̃1

(a) and mτ̃1 (b) as a
function of M2 for tanβ = 50 and m0 = 300GeV. As can
be seen, depending on the models, the squark and slepton
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Fig. 2a,b. The b-quark and τ -lepton masses, including the
radiative corrections, as a function of µ, for tanβ = 50 and
M2 = 150GeV in the various models of Table 1

masses can be different for different models. In Fig. 3c, the
masses md̃R

,mẽR and mb̃1
,mτ̃1 are shown as a function of

µ for tanβ = 50; we have used the previous equations
and fixed m0 = 300GeV and m1 = m2 = m3 = m1/2 =
120GeV, i.e. as in the mSUGRA-type scenario. While for
small values of µ, and hence small off-diagonal elements
in the b̃ and τ̃ mass matrices, d̃R, b̃1 and ẽR, τ̃1 are almost
degenerate in mass, the mass splitting increases with in-
creasing µ reaching a substantial amount for µ ≥ m0.

2.1.3 The Higgs sector

The MSSM includes two iso-doublets of Higgs fields, which
after spontaneous symmetry breaking, give rise to a quin-
tet of physical Higgs boson states: h,H, A,H± [28]. While
an upper bound of about 130GeV can be derived on the
mass of the light CP -even neutral Higgs boson h [29],
the heavy CP -even and CP -odd neutral Higgs bosons H,
A, and the charged Higgs bosons H± may have masses of
the order of the electroweak symmetry scale v up to about
1TeV. This extended Higgs system can be described by
two parameters at the tree level: tanβ and one mass pa-
rameter which is generally identified with the pseudoscalar
mass MA. The Higgs mass parameters and the couplings
are affected by top and stop loop radiative corrections [29],
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Fig. 3a–c. The masses of lightest sbottom a and tau slepton b
as a function of M2 for m0 = 300GeV and µ = 750GeV in the
models of Table 1. The b̃1, d̃R and τ̃1, ẽR masses as a function
of µ, for tanβ = 50 and M2 = 150GeV in model 1, c

which in the leading approximation are parameterized by

ε ≈ 3GFm
4
t√

2π2 sin2 β
log
m̃2

m2
t

, (2.31)

where the scale of supersymmetry breaking is character-
ized by a common squark-mass value m̃. The next-to-
leading order QCD corrections can be included by using
the running top quark mass in the MS scheme. Stop mix-
ing effects can be accounted for by shifting m̃2 in (2.31)
by the amount (Ãt = At − µ cotβ)
m̃2 → m̃2 +∆m̃2 : ∆m̃2 = Ã2

t [1 − Ã2
t/(12m̃

2)]. (2.32)

The neutral CP -even and charged Higgs boson masses and
the mixing angle α in the neutral sector, when expressed
in terms ofMA and tan β, are given in this approximation
by

M2
h,H =

1
2

[
M2

A + M2
Z + ε

∓
√
(M2

A + M2
Z + ε)2 − 4M2

AM2
Zc2

2β − 4ε(M2
As2

β + M2
Zc2

β)
]
,

M2
H± = M2

W + M2
A,

tan 2α = tan 2β
M2

A + M2
Z

M2
A − M2

Z + ε/c2β
,

with − π

2
≤ α ≤ 0. (2.33)

In the decoupling limit, MA 
MZ , the A,H,H± bosons
become degenerate in mass MA � MH � MH± while the
lightest h boson reaches its maximal mass value M2

h ∼
M2

Z+ε; the angle α approaches the value α → β−π/2. The
couplings of the h particle to fermions and gauge bosons
are then SM-like, while the couplings of the H,A,H±
bosons to down (up)-type fermions are (inversely) pro-
portional to tanβ.

In the present analysis, we will use the full renormal-
ization-group improved radiative corrections to the Higgs
sector given in [30]. We will often denote the Higgs bosons
by Hk with k = 1, 2, 3, 4, corresponding to H,h,A and
H±, respectively.

2.2 Couplings

In this subsection, we list the various couplings [2,16,18]
which will be needed in our analysis. All the couplings are
normalized to the electric charge e.
(1) The couplings of the charginos and neutralinos to the
weak gauge bosons W±, Z:

GL,R
χ0

iχ
+
j W+ = GL,R

ijW , with

GL
ijW =

1√
2sW

[−Zi4Vj2 +
√
2Zi2Vj1],

GR
ijW =

1√
2sW

[Zi3Uj2 +
√
2Zi2Uj1], (2.34)

GL,R
χ−

i χ+
j Z

= GL,R
ijZ , with

GL
ijZ =

1
cW sW

[
−1
2
Vi2Vj2 − Vi1Vj1 + δijs2W

]
,

GR
ijZ =

1
cW sW

[
−1
2
Ui2Uj2 − Ui1Uj1 + δijs2W

]
,(2.35)

GL,R
χ0

iχ
0
jZ

= GL,R
ijZ , with

GL
ijZ = − 1

2sW cW
[Zi3Zj3 − Zi4Zj4],

GR
ijZ = +

1
2sW cW

[Zi3Zj3 − Zi4Zj4]. (2.36)

(2) The couplings of charginos and neutralinos to the
Higgs bosons:

GL,R
χ0

iχ
+
j H+ = GL,R

ij4 , with

GL
ij4 =

cβ
sW

[
Zj4Vi1 +

1√
2
(Zj2 + tan θWZj1)Vi2

]
,

GR
ij4 =

sβ
sW

[
Zj3Ui1 − 1√

2
(Zj2 + tan θWZj1)Ui2

]
,

GL,R
χ−

i χ+
j H0

k

= GL,R
ijk , with

GL
ijk =

1√
2sW

[ekVj1Ui2 − dkVj2Ui1] ,



570 A. Djouadi et al.: Chargino and neutralino decays revisited

GR
ijk =

1√
2sW

[ekVi1Uj2 − dkVi2Uj1] εk, (2.37)

GL,R
χ0

iχ
+
j H+ = GLR

ij4, with

GL
ijk =

1
2sW

(Zj2 − tan θWZj1)

× (ekZi3 + dkZi4) + i↔ j

GR
ijk =

1
2sW

(Zj2 − tan θWZj1)

× (ekZi3 + dkZi4) εk + i↔ j, (2.38)

where ε1,2 = −ε3 = 1 and the coefficients ek and dk read

e1/d1 = cα/− sα, e2/d2 = −sα/− cα,
e3/d3 = −sβ/cβ . (2.39)

(3) For the couplings between neutralinos, fermions and
sfermions, f̃i − f − χ0

j , one has{
af̃j1

af̃j2

}
= − mfrf√

2MW sW

{
sθf

cθf

}
− efLj

{
cθf

−sθf

}
,

{
bf̃j1

bf̃j2

}
= − mfrf√

2MW sW

{
cθf

−sθf

}
− efRj

{
sθf

cθf

}
, (2.40)

with ru = Zj4/ sinβ and rd = Zj3/ cosβ for up- and
down-type fermions, and

efLj =
√
2
[
efZ

′
j1 +

(
I3f − efs2W

) 1
cW sW

Z ′
j2

]
,

efRj = −
√
2ef

[
Z ′
j1 − sW

cW
Z ′
j2

]
. (2.41)

(4) For the couplings between charginos, fermions and
sfermions, f̃i − f ′ − χ+

j , one has for up-type and down-
type sfermions{

aũj1
aũj2

}
=
Vj1
sW

{
−cθu

sθu

}
+

muVj2√
2MW sW sβ

{
sθu

cθu

}
,

{
bũj1
bũj2

}
=

mdUj2√
2MW sW cβ

{
cθu

−sθu

}
, (2.42)

{
ad̃j1
ad̃j2

}
=
Uj1

sW

{
−cθd

sθd

}
+

mdUj2√
2MW sW cβ

{
sθd

cθd

}
,

{
bd̃j1
bd̃j2

}
=

muVj2√
2MW sW sβ

{
cθd

−sθd

}
. (2.43)

(5) Finally, the couplings of the W,Z gauge bosons and
the four Higgs bosons Hk = H,h,A,H± with k = 1, ..., 4
to fermions are

vfZ =
2I3f − 4efs2W

4cW sW
, afZ =

2I3f
4cW sW

,

vfW = afW =
1

2
√
2sW

, (2.44)

Fig. 4. The Feynman diagrams contributing to the three-
body decays of charginos and neutralinos into the LSP and
two fermions

vf1 =
mfr

f
2

2sWMW
, af1 = 0, vf2 =

mfr
f
1

2sWMW
, af2 = 0,

vf3 = 0, af3 =
−mf (tanβ)−2I3

f

2sWMW
, (2.45)

vf4 = −md tanβ +mucotβ
2
√
2sWMW

,

af4 =
md tanβ −mucotβ

2
√
2sWMW

, (2.46)

with the coefficients rf1,2:

ru1 = sα/sβ , ru2 = cα/sβ ,

rd1 = cα/cβ , rd2 = −sα/cβ . (2.47)

3 Three-body decays

In this section we give the complete analytical expressions
of the partial widths of the three-body decays of charginos
and neutralinos into a neutralino and two fermions, that
we will denote to be general by u and d̄ (although they
can be the same)

χi → χ0
jud̄. (3.1)

We will not assume that the final neutralino is the LSP χ0
1,

but any of the neutralinos χ0
j to cover also the possibility

of cascade decays. As shown in Fig. 4, these decays proceed
through gauge boson exchange (V =W and Z for χ+

i and
χ0
i decays, respectively), Higgs boson exchange (Hk = H+

for χ+
i decays and Hk = H,h,A with k = 1, 2, 3 for χ0

i de-
cays) and sfermion exchange in the t- and u-channels (the
flavor is fixed by the sfermion–fermion and final neutralino
vertex). For gluino decays [31,9], only the channels with
u- and t-channel squark exchange will be present; the par-
tial widths can be straightforwardly derived from those of
the neutralino decays, with the appropriate change of the
couplings. Note that for the treatment of the Majorana
nature of the initial state, we use the rules given in [32].

In this section, we will simply give the complete ana-
lytical expressions for the (unpolarized) Dalitz plot den-
sity in terms of the energies of two final fermions, and for
the fully integrated partial widths for vanishing fermion
masses4. (In the most complete analysis of these decays

4 In mSUGRA-type models, this approximation is very good
for all light fermion final states, including b-quarks and τ -
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available in the literature up to now, [6], the fully inte-
grated partial widths have not been derived: one integral
has been left-out and performed numerically.) The formu-
lae for the general case with non-vanishing values for the
masses of the final standard fermions (to be able to de-
scribe more accurately the cases of chargino decays into τν
as well as neutralino decays into bb̄ and τ+τ− final states
and to treat the case of the top quark) and where the po-
larization of the initial gauginos are taken into account,
are given in the appendix.

3.1 The Dalitz densities for the three-body decays

The Dalitz density of the decay mode (3.1) is given in
terms of the reduced energies of the two final state
fermions

x1 = 2Eu/mχi , x2 = 2Ed/mχi ,

x3 = 2Eχj/mχi = 2 − x1 − x2, (3.2)

but we will also use the simplifying notation:

y1 = 1 − x1 − µχ, y2 = 1 − x2 − µχ,
y3 = 1 − x3 + µχ, (3.3)

with the reduced masses µ2
X = M2

X/m
2
χi

(for the final
state neutralino we drop the index, i.e. µχ = m2

χ0
j
/m2

χi
).

Neglecting the masses of the final fermions (but not in the
couplings) and the widths of the exchanged (s)particles,
the Dalitz density is given by

dΓχi

dx1dx2
=
e4mχi

64(2π)3
Nc

[
dΓV + dΓũ + dΓd̃ + dΓΦ

+dΓH1H2 + dΓV ũ + dΓV d̃

+dΓũd̃ + dΓΦũ + dΓΦd̃

]
, (3.4)

where Nc is the color factor (Nc = 3(1) for final state
quarks (leptons)) and the dΓ ’s correspond, respectively,
to the separate contributions of the square of the gauge
boson, ũ, d̃ and Higgs exchanges and the V ũ, V d̃, ũd̃, Φũ,
Φd̃ and H1H2 interferences.

The various contributions, in terms of the couplings
given in Sect. 2.2, read

dΓV =
4

(y3 − µV )2
×
{
[(vfV − afV )2(GL

jiV )
2 + (vfV + afV )

2

×(GR
jiV )

2]x1y1 + [(vfV − afV )2(GR
jiV )

2

leptons, since χ0
2 and χ+

1 are expected to have masses larger
than O(100GeV). The approximation would be bad for top
quark final states; however, if the three-body decays χ0

2 → χ0
1tt̄

and χ+
1 → χ0

1tb̄ are kinematically allowed, they will not play
a major role since the charginos and neutralinos will have
enough phase space to decay first into the two-body channels
χ0

2 → χ0
1Z, χ0

1h (and possibly χ0
1H and χ0

1A) and χ+
1 → χ0

1W
(and possibly χ0

1H
+), which will be largely dominating

+(vfV + afV )
2(GL

jiV )
2]x2y2

− 4[(vfV )
2 + (afV )

2]GL
jiVG

R
jiV

√
µχy3

}
, (3.5)

dΓd̃ =
2∑

k,l=1

x1y1
(1 − x1 − µd̃k

)(1 − x1 − µd̃l
)

× (adika
d
il + b

d
ikb

d
il)(a

d
jka

d
jl + b

d
jkb

d
jl), (3.6)

dΓũ =
2∑

k,l=1

x2y2
(1 − x2 − µũk

)(1 − x2 − µũl
)

× (auika
u
il + b

u
ikb

u
il)(a

u
jka

u
jl + b

u
jkb

u
jl), (3.7)

dΓΦ = 2
∑
k

y3

[
(vfk )

2 + (afk)
2
]

(y3 − µHk
)2

× [((GL
ijk)

2 + (GR
ijk)

2)x3 + 4
√
µχ(GL

ijkG
R
ijk)],(3.8)

dΓH1H2 =
4y3v

f
1 v

f
2

(y3 − µH1)(y3 − µH2)

[
(GL

ij1G
L
ij2 +G

R
ij1G

R
ij2)x3

+ 2
√
µχ(GL

ij1G
R
ij2 +G

L
ij2G

R
ij1)
]
, (3.9)

dΓV d̃ = −4
2∑

k=1

{{( [
adika

d
jkG

R
jiV (v

d
V + adV )

+bdikb
d
jkG

L
jiV (v

d
V − adV )

]
x1y1

)
/(

(y3 − µV )(1 − x1 − µd̃k
)
)}

−
{(√

µχ
[
adika

d
jkG

L
jiV (v

d
V + adV )

+bdikb
d
jkG

R
jiV (v

d
V − adV )

]
y3

)
/(

(y3 − µV )(1 − x1 − µd̃k
)
)}}

(3.10)

dΓV ũ = 4
2∑

k=1

{{( [
auika

u
jkG

L
jiV (v

u
V + auV )

+buikb
u
jkG

R
jiV (v

u
V − auV )

]
x2y2

)
/(

(y3 − µV )(1 − x2 − µũk
)
)}

−
{(√

µχ
[
auika

u
jkG

R
jiV (v

u
V + auV )

+buikb
u
jkG

L
jiV (v

u
V − auV )

]
y3

)
/(

(y3 − µV )(1 − x2 − µũk
)
)}}

, (3.11)

dΓũd̃ =
2∑

k,l=1

{{(
(aujka

d
ilb

u
ikb

d
jl + a

u
ika

d
jlb

u
jkb

d
il)

×(−x1y1 − x2y2 + x3y3)
)

/(
(1 − x2 − µũk

)(1 − x1 − µd̃l
)
)}

+
{(

2(auika
u
jka

d
ila

d
jl + b

u
ikb

u
jkb

d
ilb

d
jl)

√
µχy3

)
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/(
(1 − x2 − µũk

)(1 − x1 − µd̃l
)
)}}

, (3.12)

dΓΦd̃ = −
∑
k,l

{{(
(vdk − adk)adilbdjl

(
GR

ijk

×(x1y1 − x2y2 + x3y3) + 2GL
ijk

√
µχy3

) )
/(

(y3 − µk)(1 − x1 − µd̃l
)
)}

+
{(

(adk + v
d
k)b

d
ila

d
jl

(
GL

ijk(x1y1 − x2y2 + x3y3)

+2GR
ijk

√
µχy3

) )
/(

(y3 − µk)(1 − x1 − µd̃l
)
)}}

, (3.13)

dΓΦũ =
∑
k,l

{{(
(vuk − auk)builaujl

(
GR

ijk

×(x1y1 − x2y2 − x3y3) − 2GL
ijk

√
µχy3

) )
/(

(y3 − µk)(1 − x2 − µũl
)
)}

+
{(

(auk + vuk )a
u
ilb

u
jl

(
GL

ijk(x1y1 − x2y2 − x3y3)

−2GR
ijk

√
µχy3

) )
/(

(y3 − µk)(1 − x2 − µũl
)
)}}

. (3.14)

A few remarks need to be made at this stage.
(1) In the expressions of the couplings, the indices i and
j refer always to the decaying chargino or neutralino and
the final state neutralino, respectively.
(2) For the Higgs boson exchange contributions, in the
case of chargino decays, only the exchange of the charged
Higgs boson is present and in dΓΦ one has k = 4 only.
In the case of neutralino decays, the three neutral Higgs
bosons will contribute and k in the sum

∑
k of dΓΦ runs

from k = 1 to 3. In addition, there is an extra term,
dΓH1H2 , due to the interference between the exchange of
the two CP -even Higgs bosons h and H. Note also that in
this case, there is a difference between the contributions of
the CP -even (and the charged) and CP -odd Higgs bosons
which appears in the terms ε1,2,4 = 1 and ε3 = −1 in the
couplings.
(3) For massless final state fermions, there is no inter-
ference between the vector boson and Higgs boson con-
tributions. In the appendix, where the fermion mass de-
pendence will be included, interference terms between the
Higgs bosons and the vector bosons, which are propor-
tional to the fermion masses, will be shown explicitly.
(4) In the sfermion exchange diagrams, there is a rela-
tive minus sign between the amplitudes of the u- and t-
channels, due to Wick’s theorem. This leads to dΓV ũ and
dΓV d̃ contributions which are anti-symmetric in the inter-
change of x1 and x2. In the case of dΓΦũ and dΓΦd̃, the

contributions are symmetric in the interchange of x1 and
x2, due to the scalar nature of the Higgs bosons.

3.2 Integrated three-body partial widths

Integrating over the energies x1 and x2 of the two
fermions, with boundary conditions,

1 − x1 − µχ ≤ x2 ≤ 1 − µχ
1 − x1

,

0 ≤ x1 ≤ 1 − µχ, (3.15)

one obtains the partial decay width, which is given by an
expression similar to (3.4):

Γχi
=
α2Nc

32π
mχi

[
ΓV + Γũ + Γd̃ + ΓΦ + ΓH1H2 + ΓV ũ

+ ΓV d̃ + Γũd̃ + ΓΦũ + ΓΦd̃

]
. (3.16)

Using the phase space functions λk and the function Lk

defined by

λk = 1 − 2µχ − 2µk + (µk − µχ)2, (3.17)

Lk =
2√−λk

[
Arctan

(−1 + µχ − µk√−λk

)

− Arctan
(
1 − µχ − µk√−λk

)]
, (3.18)

one has for the various contributions:

ΓV = 8
[
(vfV )

2 + (afV )
2
] [

(GL
jiV )

2 + (GR
jiV )

2]
×
{µχ − 1

6µV
(λV + µV (5 + 5µχ − 7µV ))

− µV
2

(1 + µχ − µV )Logµχ − µV
2

(λV + 2µχ)LV

}
− 8

[
(vfV )

2 + (afV )
2
]
GL

jiVG
R
jiV

√
µχ

×
{
4(µχ − 1) + (1 + µχ − 2µV )Logµχ

+ (λV − µV (1 + µχ − µV ))LV

}
, (3.19)

Γf̃ =
2∑

k,l=1

(afika
f
il + b

f
ikb

f
il)(a

f
jka

f
jl + b

f
jkb

f
jl)

×
{
(1 − µχ)(µf̃k

+ µf̃l
) − 3

2
(1 − µ2

χ)

+
(µf̃l

− 1)2(µf̃l
− µχ)2

µf̃l
(µf̃l

− µf̃k
)

Log
µf̃l

− 1
µf̃l

− µχ

+
(µf̃k

− 1)2(µf̃k
− µχ)2

µf̃k
(µf̃k

− µf̃l
)

Log
µf̃k

− 1
µf̃k

− µχ

− µ2
χ

µf̃k
µf̃l

Logµχ

}
, (3.20)

ΓΦ =
∑
k

2
[
(vfk )

2 + (afk)
2
] [

(GL
ijk)

2 + (GR
ijk)

2]
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×
{
1
2
(1 − µχ)(6µk − 5 − 5µχ)

+
1
2
[−5µ2

χµk − 3µ3
k + 7µ2

k + 1 − µ2
χ − µχ + µ3

χ

− 5µk + 7µχµ2
k − 2µχµk

]Lk

+
1
2
(
1 − 4µk − 4µχµk + 3µ2

k + µ
2
χ

)
Logµχ

}

+ 4
[
(vfk )

2 + (afk)
2
]
GL

ijkG
R
ijk

√
µχ

× {4(µχ − 1) + (1 + µχ − 2µk)Logµχ
+ (λk − µk(1 + µχ − µk))Lk}, (3.21)

ΓH1H2 = 2vf1 v
f
2

{
(GL

ij1G
L
ij2 +G

R
ij1G

R
ij2)

×
[
(2µH1 + 2µH2 − 3µχ − 3)(1 − µχ)

+
µH1(1 + µχ − µH1)

µH2 − µH1

λH1LH1

− µH2(1 + µχ − µH2)
µH2 − µH1

λH2LH2

+ (1 + µ2
χ + µ2

H1
+ µ2

H2
+ µH1µH2

− 2(1 + µχ)(µH1 + µH2))Logµχ

]

+ 2
√
µχ(GL

ij1G
R
ij2 +G

L
ij2G

R
ij1)

×
[

µH1

µH2 − µH1

λH1LH1 − µH2

µH2 − µH1

λH2LH2

+
µ2
H1

− µ2
H2

− (µH1 − µH2)(1 + µχ)
µH2 − µH1

Logµχ

− 2(1 − µχ)
]}

(3.22)

ΓV f̃ = 4
2∑

k=1

{
Af

1

(
µχ − 1

4
(µχ + 1 − 4µf̃k

+ 2µV )

+
1
4
(1 + µχ − 2µf̃k

+ µV )λV LV

+
1
4
(1 + 4µχ + µ2

χ − 2µf̃k
− 2µf̃k

µχ

+ 2µf̃k
µV − µ2

V )Logµχ

+ (µχ − µf̃k
)(−1 + µf̃k

)F(aV+, a
V
−, µf̃k

, µV )

)

− Af
2
√
µχ

(
µχ − 1 − µχ

µf̃k

Logµχ

+ µV F(aV+, a
V
−, µf̃k

, µV ) − 1
µf̃k

(µχ − µf̃k

− µχµf̃k
+ µ2

f̃k
)Log

µf̃k
− 1

µf̃k
− µχ

)}
, (3.23)

where

Ad
1 = −[adika

d
jkG

R
jiV (v

d
V + adV ) + b

d
ikb

d
jkG

L
jiV (v

d
V − adV )],

Au
1 = auika

u
jkG

L
jiV (v

u
V + auV ) + b

u
ikb

u
jkG

R
jiV (v

u
V − auV ),

Ad
2 = −[adika

d
jkG

L
jiV (v

d
V + adV ) + b

d
ikb

d
jkG

R
jiV (v

d
V − adV )],

Au
2 = auika

u
jkG

R
jiV (v

u
V + auV )

+buikb
u
jkG

L
jiV (v

u
V − auV ), (3.24)

ΓΦf̃ =
∑
k,l

{
Bf

1

(
(1 − µχ)(−1 + 2µk − µχ + 2µf̃l

)

− µkλkLk − µk(1 + µχ − µk)Logµχ
− 2Log

µf̃l
− µχ

µf̃l
− 1

(µχ − µf̃l
− µχµf̃l

+ µ2
f̃l
)

− 2µkµf̃l
F(aHk

+ , aHk− , µf̃l
, µk)

)

− 2Bf
2
√
µχ

(
µχ − 1 − µχ

µf̃l

Logµχ

− 1
µf̃l

(µχ − µf̃l
− µχµf̃l

+ µ2
f̃l
)Log

µf̃l
− 1

µf̃l
− µχ

+ µkF(aHk
+ , aHk− , µf̃l

, µk)

)}
, (3.25)

where

Bd
1 = (vdk − adk)adilbdjlGR

ijk + (vdk + adk)b
d
ila

d
jlG

L
ijk,

Bu
1 = (vuk − auk)aujlbuilGR

ijk + (vuk + auk)a
u
ilb

u
jlG

L
ijk,

Bd
2 = (vdk − adk)adilbdjlGL

ijk + (vdk + adk)b
d
ila

d
jlG

R
ijk,

B2
u = (vuk − auk)builaujlGL

ijk

+ (vuk + auk)a
u
ilb

u
jlG

R
ijk, (3.26)

Γũd̃ = −2
2∑

k,l=1

{
(aujka

d
ilb

u
ikb

d
jl + a

u
ika

d
jlb

u
jkb

d
il)

×
(
1
2
(µχ − 1)(2µũk

+ 2µd̃l
− µχ − 1) − µχLogµχ

+ Log
µũk

− 1
µũk

− µχ (µũk
− µχ)(1 − µũk

)

+ Log
µd̃l

− 1
µd̃l

− µχ (µd̃l
− µχ)(1 − µd̃l

)

+ (µχ − µũk
µd̃l

)

× F̃((µũk
− µχ)/µũk

, µũk
− µχ, µd̃l

, µũk
)

)

+ (auika
u
jka

d
ila

d
jl + b

u
ikb

u
jkb

d
ilb

d
jl)

× √
µχ

(
Log

µũk
− 1

µũk
− µχ (µũk

− µχ)(1 − µũk
)/µũk

+ Log
µd̃l

− 1
µd̃l

− µχ (µd̃l
− µχ)(1 − µd̃l

)/µd̃l
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+ 2(µχ − 1) + (1 + µχ − µd̃l
− µũk

)

× F̃((µũk
− µχ)/µũk

, µũk
− µχ, µd̃l

, µũk
)

−
(
µχ
µũk

+
µχ
µd̃l

)
Logµχ

)}
. (3.27)

In the previous expressions, we have used the variables
and functions:

ai± =
1
2
(1 − µχ + µi ±

√
λi), (3.28)

F(a, b, µi, µj) = f(a, µi) + f(b, µi) − f(1, µi)
+ LogµjLog

µi − µχ
µi − 1

,

F̃(a, b, µi, µj) = f(a, µi) − f(b, µi) − f(1, µi)
− LogµjLog

µi − µχ
µi − 1

, (3.29)

f(a, µi) = Li2

(
µi − µχ
a+ µi − 1

)
− Li2

(
µi − 1

a+ µi − 1

)

− Log(a+ µi − 1)Log
(
µi − µχ
µi − 1

)
, (3.30)

where Li2 is the Spence function defined by Li2(x) =∫ 1
0 t

−1Log(1 − xt)dt.

3.3 The two-body partial decay widths

The two-body partial decay widths can be obtained from
the expressions given in Sect. 3.1 by including the total
decay widths of the exchanged gauge and Higgs bosons
and the sfermions. In this case a smooth transition be-
tween three- and two-body partial decay widths can be
obtained. We will list below the integrated form of the
two-body partial decay widths of charginos and neutrali-
nos into sfermion–fermion pairs (with massive fermions),
and into neutralino and gauge or Higgs boson final states;
see also [33].

Γ (χi → ff̃j) =
αNc

8
mχi

[(
(afij)

2 + (bfij)
2
)

× (1 − µf̃j
+ µf ) + 4

√
µfa

f
ijb

f
ij

]

× λ1/2(µf , µf̃j
), (3.31)

Γ (χi → χjV ) =
α

8
mχi

λ1/2(µχj
, µV )

{
− 12√µχj

GL
jiV

× GR
jiV +

[
(GL

jiV )
2 + (GR

jiV )
2]

× (1 + µχj − µV ) + (1 − µχj + µV )

× (1 − µχj − µV )µ−1
V

}
, (3.32)

Γ (χi → χjHk) =
α

8
mχi

λ1/2(µχj
, µHk

)

×
{ [

(GL
ijk)

2 + (GR
ijk)

2] (1 + µχj − µHk
)

+ 4√µχjG
L
ijkG

R
ijk

}
, (3.33)

Fig. 5. The Feynman diagrams contributing to the three-body
decay χi → g̃qq̄

with

λ(x, y) = 1 + x2 + y2 − 2x− 2y − 2xy,
µX = m2

X/m
2
χi
, (3.34)

3.4 Decays into gluino and quark–antiquark final states

As discussed in Sect. 2.1, in models without gaugino mass
unification at the GUT scale, the lightest chargino and
the next-to-lightest neutralino could be heavier than the
gluino. In this case, the three-body decay modes

χi → g̃ud̄, (3.35)

with χi ≡ χ±
1 or χ0

2, are kinematically accessible. This
decay is mediated by t- and u-channel exchange of squarks
only; see Fig. 5.

The Dalitz density and the partial decay width, ne-
glecting the masses of the final state quarks, are given by

dΓχi

dx1dx2
=
e2g2smχi

8(2π)3
[dΓũ + dΓd̃ + dΓũd̃],

Γχi
=
ααs
4π
mχi

[Γũ + Γd̃ + Γũd̃], (3.36)

with x1 = 2Eu/mχi
, x2 = 2Ed/mχi

. The various am-
plitudes are as in (3.6), (3.7) and (3.12) for the Dalitz
densities and (3.20) and (3.27) for the integrated width,
now with µχ ≡ m2

g̃/m
2
χi
. One has also to replace the final

neutralino–f–f̃l couplings, afjl, b
f
jl, by the gluino–quark–

squark couplings, aql , b
q
l , which in the case of mixing read

aq1 = bq2 = sin θq, aq2 = −bq1 = cos θq. (3.37)

The expressions for the three-body decays of gluinos into
the χi + qq̄ final states [31,9] are given by the previous
formulae with the interchange of mχi and mg̃ and by di-
viding the result by a factor of 8 to account for the color
numbers of the gluino. (Note that this factor is missing
in the expression of the gluino decay width in [9]; since it
is a global factor, the branching ratios are therefore not
affected.)

4 Numerical analysis

We will first illustrate our results in an mSUGRA-type
model, where we assume a universal massm0 for the scalar
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fermions and a mass m1/2 for the gauginos at the GUT
scale; the soft SUSY-breaking masses for the Higgs bosons
are however disconnected from the one of the sfermions so
that the pseudo-scalar Higgs boson massMA and the hig-
gsino parameter µ are free parameters (in contrast to the
mSUGRA model where µ is determined, up to its sign,
from the requirement of electroweak symmetry breaking).
For the squark sector, we will use the simple expressions
(2.30) for the soft SUSY-breaking left- and right-handed
squark and slepton masses when performing the RGE evo-
lution to the weak scale at one-loop order if the Yukawa
couplings in the RGE’s are neglected5. One has then,
in the case of the third generation sparticles, to include
the mixing. Since for sbottoms and stau’s, large enough
off-diagonal elements of the mass matrices are obtained
only for large µ and tanβ values and the trilinear cou-
plings play only a marginal role, we will fix the latter
at Ab = Aτ = −500GeV in the entire analysis. We will
choose two representative values for tanβ: a “low” value
(tanβ = 5) and a large value (tanβ = 50) and two val-
ues for the pseudoscalar A boson mass6, MA = 100 and
500GeV.

In a second step, we will relax the gaugino mass uni-
fication constraint m1 = m2 = m3 = m1/2 at the GUT
scale, and use the weak scale gaugino masses M1 and M2
given in Table 1 for the FΦ representations and the OII
model. We will still use the soft SUSY-breaking scalar
masses given in (2.30). In this case, we will stick in the
illustrations to the large tanβ scenario, tanβ = 50, but
still show the effect of the Higgs boson contribution by
taking the two examples MA = 100 and 500GeV.

In most of the cases, the wino mass parameter will be
fixed to M2 = 150GeV, which for large values of µ, leads
in an mSUGRA-type model to the masses mχ±

1
� mχ0

2
�

150GeV and mχ0
1

� 75GeV (there is a very small vari-
ation with the value of tanβ) and hence to states which
are accessible at the high-luminosity phase of the Tevatron
and at a future e+e− linear collider with a c.m. energy of
500GeV.

Note that in the entire analysis, we will include the
radiative corrections to the b-quark and τ -lepton masses,
as well as the radiative corrections to the chargino, neu-
tralino and gluino masses given in Sect. 2.1. We will also
take into account the full dependence on the final state
fermion masses (using the pole masses mb = 4.6GeV,
mτ = 1.78GeV and mc = 1.45GeV in the phase space,
the other fermions are taken to be massless) since in some

5 As mentioned previously, for third generation sfermions,
neglecting the Yukawa couplings in the RGE is a poor approx-
imation since these couplings can be large; this is particularly
the case for top squarks which however will not be considered
in the present analysis, since we will assume that charginos and
neutralinos are not heavy enough to decay into top quark final
states

6 In the large tanβ scenario and in the non-decoupling
regime, the experimental bounds on the masses of the pseu-
doscalar Higgs boson A and the lightest Higgs boson h in
the MSSM from negative searches at LEP2 are MA, Mh �
93.5GeV [11]

cases (in particular when the decaying chargino or neu-
tralino has a mass which is close to the final LSP mass),
they play a significant role.

The branching ratios for the lightest chargino χ±
1 and

next-to-lightest neutralino χ0
2 into the LSP and τ and b-

quark final states are shown in Figs. 6–8, in model 1 with
gaugino mass unification atMGUT. The wino mass param-
eter is fixed atM2 = 150GeV and the choices tanβ = 5, 50
and MA = 100, 500GeV have been made.

In Fig. 6a, BR(χ+
1 → χ0

1τ
+ν) is shown as a function

of the lightest τ̃1 mass for µ = +500GeV. For large val-
ues of mτ̃1 and with a heavy charged Higgs boson (MA =
500GeV leading toMH± = 506GeV), the branching ratio
is small, being at the level of 10%. In this regime, the dom-
inant contribution is coming from the virtualW -boson ex-
change and BR(χ+

1 ) is practically the same as BR(W →
ff̄), i.e. ∼ 10% for the τ+ν final state. However, for large
values of tanβ and for a light H±-boson (MA = 100GeV
leading to MH± ∼ 128GeV), the charged Higgs boson
contribution (since the H±ντ∓ couplings are enhanced)
becomes dominant and the fraction BR(χ+

1 → χ0
1τ

+ν)
can reach the level of 40% even for mτ̃1 ∼ 500GeV. For
smaller values of mτ̃1 , the virtual stau exchange diagram
becomes more and more dominant, and BR(χ+

1 → χ0
1τ

+ν)
becomes close to ∼ 80% for stau masses of the order of
150GeV. If in addition, H± is relatively light, the branch-
ing ratio reaches the level of 100%.

Figures 6b,c, where BR(χ+
1 → χ0

1τ
+ν) is plotted for a

common sfermion mass m0 = 300GeV as a function of µ
and tanβ, respectively, show the same trend from a dif-
ferent perspective. For small values of tanβ, the mixing in
the stau sector and the Yukawa couplings of the τ -lepton
are not enhanced and the branching fraction is at the level
of 10%. But for large tanβ values, the stau becomes light
and the branching ratio becomes close to unity for large
values of µ. This occurs more quickly, if the charged Higgs
boson is light.

Figures 7 and 8 show, respectively, the branching ratios
BR(χ0

2 → χ0
1τ

+τ−) and BR(χ0
2 → χ0

1bb̄), as functions of
mτ̃1 ormb̃1

for µ = 500GeV (a), as a function of µ (b) and
as a function of tanβ (c) for m0 = 300GeV. In this case,
there is a competition between bb̄ and τ+τ− final states.
In the case of a light A-boson and for large tb values, the
A and h contributions are much more important in the
decay χ0

2 → χ0
1bb̄ than in the channel χ0

2 → χ0
1τ

+τ− be-
cause of the larger b-quark mass and the color factor; the
Higgs contribution makes then BR(χ0

2 → χ0
1bb̄) dominat-

ing, except when τ̃1 is very light, and the two-body decay
χ0

2 → τ̃1τ is close to occur, making BR(χ0
2 → χ0

1τ
+τ−)

close to unity. Even for heavy A,H-bosons, BR(χ0
2 →

χ0
1bb̄) can reach the level of ∼ 50%. However, for large

enough values of tanβ and µ, it is the decay channel
χ0

2 → χ0
1τ

+τ− which dominates, since for a universal
scalar mass m0, the stau is always lighter than the b̃1-
state and its virtual contribution is larger, despite of the
color factor. Needless to say, the sum of the two branch-
ing ratios, BR(χ0

2 → χ0
1τ

+τ− +χ0
1bb̄) is in general close to

unity.
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Fig. 6a–c. The branching ratio BR(χ+
1 → χ0

1ντ+) for two
values of tanβ = 5 and 50 and two values of MA = 100GeV
(solid lines) and 500GeV (dashed lines) as a function of mτ̃1 for
µ = 500GeV a as a function of µ assuming m0 = 300GeV b
and as a function of tanβ for two values of µ = 100 and
1000GeV c; M2 is fixed at 150GeV

In Fig. 9, we illustrate the effect of the radiative correc-
tions to the b-quark mass (and to a lesser extent the tau-
lepton mass) by showing the branching ratios BR(χ0

2 →
χ0

1τ
+τ−) and BR(χ0

2 → χ0
1bb̄) as a function of tanβ with

µ,m0,MA andM2 fixed at, respectively, the values 1TeV,
300GeV, 150 and 150GeV. For µ > 0(< 0), the SUSY
radiative corrections (in particular, the correction due to
sbottom–gluino loops) decrease (increase) substantially
the value of mb, therefore suppressing (enhancing) the
χ0

2 → χ0
1bb̄ rate by a sizable factor, compared to the

branching ratio without the correction (solid lines), for
large enough tanβ values. The fraction BR(χ0

2 → χ0
1τ

+

τ−) increases (decreases) then, accordingly. These correc-
tions are therefore very important and must be taken into
account.

In Figs. 10, 11 and 12, we show, respectively, the
branching fractions BR(χ+

1 → χ0
1τ

+ντ ), BR(χ0
2 → χ0

1τ
+

τ−) and BR(χ0
2 → χ0

1bb̄) as functions of µ (> 0) in the
models 24, 75, 200 and OII without gaugino mass unifi-
cation as well as in the universal model 1 for comparison.
The various parameters are fixed at the following values:
tanβ = 50, M2 = 150GeV, m0 = 500 and MA = 100
(a) and 500GeV (b). Before discussing the various decay
channels in these models, compared to the universal case,
let us make two general comments:
(i) The values of M1,2,3 at the weak scale are different
and modify appreciably the phase space for the decays; in
particular two-body decay modes and decays into gluinos
become possible. In addition the radiative corrections to
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Fig. 7a–c. The branching ratio BR(χ0
2 → χ0

1τ
+τ−) for two

values of tanβ = 5 and 50 and two values of MA = 100GeV
(dashed lines) and 500GeV (solid lines) as a function of mτ̃1 for
µ = 500GeV a as a function of µ assuming m0 = 300GeV b
and as a function of tanβ for two values of µ = 100 and
1000GeV c; M2 is fixed at 150GeV

0

0.2

0.4

0.6

0.8

1

1000

m~b1

a) BR(�0

2
! �0

1
bb)

tan� = 50

400

5

50

5

0

0.2

0.4

0.6

0.8

1

100 1000�

b) BR(�0

2
! �0

1
bb)

tan� = 50

5

5

50

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50
tan �

c) BR(�0

2
! �0

1
bb)

� = 100 GeV

� = 1000 GeV

Fig. 8a–c. The branching ratio BR(χ0
2 → χ0

1b̄b) for two values
of tanβ = 5 and 50 and two values of MA = 100GeV (solid
lines) and 500GeV (dashed lines) as a function of mb̃1

for µ =
500 GeV a as a function of µ assuming m0 = 300GeV b and as
a function of tanβ for two values of µ = 100 and 1000GeV c;
M2 is fixed at 150GeV



A. Djouadi et al.: Chargino and neutralino decays revisited 577

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

tan �

a) BR(�02 ! �01bb)

� > 0

� < 0

No R.C.

j�j = 1 TeV

a)

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

tan �

b) BR(�02 ! �01�
+��)

� > 0

� < 0
No R.C.

j�j = 1 TeV

Fig. 9a,b. The branching ratios BR(χ0
2 → χ0

1bb̄) a and
BR(χ0

2 → χ0
1τ

+τ−) b as a function of tanβ for |µ| = 1TeV,
MA = 150GeV, m0 = 300GeV and M2 = 150GeV, with and
without the radiative corrections to the fermion masses

the gaugino masses, although only of the order of a few
GeV, could allow the opening of channels such as those
involving tau leptons.
(ii) Due to the different values of M1,2, the evolution of
the sfermion masses from ΛGUT to the weak scale are
modified, and the contributions of τ -sleptons and bot-
tom squarks can be enhanced or suppressed compared
to the universal case. Also, the radiative corrections to
the fermion masses are different and can lead to a further
enhancement or suppression of the Higgs boson and/or
sfermion contribution to the decays.

Model 24: For large µ values, µ � 200GeV, the light-
est chargino and neutralinos are gaugino-like and because
M2 ∼ 6M1, the mass differences mχ+

1
−mχ0

1
and mχ0

2
−

mχ0
1
are large, making the decays into real gauge bosons,

χ+
1 → χ0

1W and χ0
2 → χ0

1Z, kinematically possible. The
branching ratios for χ+

1 and χ0
2 are then controlled by the

W/Z branching ratios: BR(W → τ+ν) ∼ 10%, BR(Z →
τ+τ−) ∼ 3% and BR(Z → bb̄) ∼ 15%. For smaller µ
values, µ � 200GeV, the two neutralinos are mixtures of
gauginos and higgsinos and three-body decays are possi-
ble. The sfermion exchange channels increase the rates for
the χ0

2 → χ0
1τ

+τ− and χ0
1bb̄ decay channels, with an ad-
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Fig. 10a,b. The branching ratios BR(χ+
1 → χ0

1ντ+) as a
function of µ in models with non-universal gaugino masses;
we have fixed the parameters at tanβ = 50, m0 = 500GeV,
M2 = 150GeV and MA = 100 (500)GeV for a b

ditional enhancement, in the later channel, being to the
exchange of the light Higgs bosons forMA,Mh ∼ 100GeV
(this contribution is milder in the case of τ+τ− final states
because of the reduced Yukawa coupling).

Model 75: For µ ∼ O(200)GeV, mχ+
1

−mχ0
1
and mχ0

2
−

mχ0
1
are very small even after the inclusion of the radiative

corrections (Fig. 1) and the decays of χ0
2 and χ+

1 into the
LSP and massive fermions are not kinematically possible
(in this case, these particles if they are not almost stable,
will decay into the LSP and soft pions). For large values
of µ, the mass differences between χ+

1 , χ
0
2 and the LSP

are sizable (although penalizing the bb̄ final state of χ0
2)

and the different evolution of the sfermion masses as a
function of the gaugino masses and the different radiative
corrections to the bottom and tau lepton masses, explain
the quantitative differences between the branching ratios
in the two models 75 and 1.

Model 200: Here, the chargino χ+
1 and the LSP are

wino-like for large values of µ, and the mass difference
mχ+

1
−mχ0

1
is too small for the decay χ+

1 → χ0
1τ

+ν to oc-
cur. For smaller µ values, this decay can receive large con-
tributions from light Higgs bosons and sizable ones from
light sfermions (in particular, b̃1 is lighter than in model
1). In the case of the decays of the neutralino χ0

2, since the
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Fig. 11a,b. The branching ratios BR(χ0
2 → χ0

1τ
+τ−) as a

function of µ in models with non-universal gaugino masses;
we have fixed the parameters at tanβ = 50, m0 = 500GeV,
M2 = 150GeV and MA = 100 (500)GeV for a b

difference mχ0
2

− mχ0
1
is always large (exceeding MZ for

µ � 200GeV i.e. when χ0
2 is bino-like) the branching ratios

BR(χ0
2 → χ0

1τ
+τ−, χ0

1bb̄) are similar to those of model 24
and are controlled by the Z-boson decay branching ratios.
Note that in this scenario, the decay χ0

2 → g̃qq̄ is possible
as will be discussed later.

Model OII: In this model, the situation is similar to
model 200 for the decays of χ+

1 . Indeed, for µ � 300GeV,
χ+

1 is almost degenerate with the LSP and the channel
χ+

1 → χ0
1τ

+ν is kinematically closed. This is almost the
case for the neutralino χ0

2 which has a mass that is close
to the LSP mass for large µ values, suppressing the bb̄
decay mode. However, the new feature in this scenario is
that M3 < M1,2 and for large µ values, the decay modes
χ+

1 , χ
0
2, χ

0
1 → g̃qq̄ open up and become dominant because

of the strong interaction part (note, however, that the neu-
tralino χ0

1 is not the LSP anymore).
Finally, Fig. 13 shows the branching ratio for the de-

cays χ0
2 → g̃qq̄ in the model 200 where mχ0

1
< mg̃ < mχ0

2
.

For small µ values, the lightest neutralinos are higgsino-
like and they are degenerate in mass. For values of µ
around M2, the hierarchy mχ0

1
< mg̃ < mχ0

2
is possible

while χ0
1is the LSP, and the decay can occur. However,

the neutralino couplings to quark–squark pairs are small
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Fig. 12a,b. The branching ratios BR(χ0
2 → χ0

1bb̄) as a function
of µ in models with non-universal gaugino masses; we have
fixed the parameters at tanβ = 50, m0 = 500GeV, M2 =
150GeV and MA = 100 (500)GeV for a b

except in the case of (s)bottoms for large tanβ values. In
contrast, the χ0

1–χ
0
2–Z coupling is almost maximal here.

BR(χ0
2 → g̃

∑
qq̄), which is approximately the same as

BR(χ0
2 → g̃bb̄), is thus not dominant, but can reach the

level of 25%, despite of the fact that it is a mixed strong–
electroweak decay mode. For larger values of µ, the neu-
tralinos χ0

1,2 become gaugino-like and the partial decay
widths Γ (χ0

2 → g̃qq̄) are more important since the cou-
plings to fermion–sfermion pairs are enhanced; however in
this case, because M3 < M2, the gluino becomes lighter
than the lightest neutralino which we assume here to be
the LSP.

In the case of the charginos, the branching ratio for
the decays χ+

1 → g̃qq̄′ for higgsino-like charginos is even
smaller, since there is no final state with massive fermions
(the tb̄ decay mode is not kinematically accessible) and
the first and second generation (s)particles have small cou-
plings for higgsino-like charginos. In the gaugino-like re-
gion, the lightest chargino becomes lighter than the gluino
and the decay does not occur.

We have developed a fortran code called SDECAY [35]
which calculates the partial decay widths and branch-
ing ratios of the chargino and neutralino decays. It in-
cludes not only the three-body decays, χ0

2 → χ0
1ff̄ and

χ+
1 → χ0

1ff̄
′ discussed in this paper, but also all the two-
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m0 = MA = 500GeV

body decays of the charginos and neutralinos (including
the heavy χ0

3,4- and χ
+
2 -states) into gauge bosons, MSSM

Higgs bosons and fermion–sfermion pairs. The program
contains, in addition, the branching ratios for the two-,
three- and four-body decay modes of the top squarks, as
well as the three-body decays of gluinos and all relevant
decay modes of sfermions other than the top squarks.

The gaugino mass parameters M1,M2,M3, as well as
the soft SUSY-breaking scalar masses mf̃L

and mf̃R
, can

be chosen as free parameters so that decay widths and
branching ratios can be obtained in non-universal mod-
els. However, scenarios with boundary conditions at high
scales are also implemented, since the program has been
interfaced with the code SUSPECT [36] for the renormal-
ization-group equations for parameter evolution and for
the proper breaking of the electroweak symmetry. For the
parameterization of the MSSM Higgs sector, the program
has been interfaced with the code HDECAY [37], which
in addition gives the decay products for the Higgs parti-
cles. All radiative corrections discussed in this analysis are
incorporated into the program.

We have compared our results with those of [6] which
have been implemented in the program ISAJET [38]. For
massless fermions and if the SUSY radiative correction
to the fermion masses are not taken into account in the
sfermion mass matrices, the agreement was very good in
models with gaugino mass unification, giving a great confi-
dence that this rather involved calculation is correct. (The
comparison was slightly involved since the evolution of
the couplings and the soft SUSY-breaking terms as well
as the parameterization of the Higgs sectors are given in
different approximations in the programs SUSPECT and
ISAJET and we needed to use the same input parameters
at low energy in both programs7.) Our results are how-
ever different from those which can be obtained with the
program SUSYGEN (version 2.2) [40] used for SUSY par-

7 We thank Laurent Duflot from ALEPH for his help with
this comparison. An independent numerical check in the case
of the chargino decays into massless final state fermions, has
also been performed by F. Boudjema and V. Lafage [39]

ticle searches at LEP, since in the latter version, the Higgs
boson exchange contributions and the effect of third gen-
eration sfermion mixing have not been implemented8.

5 Conclusions

In this paper, we have analyzed the decay modes of
charginos and neutralinos in the MSSM where the lightest
neutralino χ0

1 is the LSP. We focused on the three-body
decay modes of the lightest charginos χ±

1 and the next-
to-lightest neutralinos χ0

2 into the LSP and two fermion
final states, and made a complete calculation of the decay
widths and branching ratios, taking into account all possi-
ble channels: vector boson, Higgs boson and sfermion ex-
change with the mixing in the sfermion sector included. In
this context, we have shown that the SUSY radiative cor-
rections to the heavy fermion masses, in particular to the
b-quark mass, and to the chargino and neutralino masses
can play an important role. We derived full analytical ex-
pressions of the Dalitz densities and the integrated partial
decay widths in the massless fermion case, and provided
the complete formulae for the differential decay widths,
including the finite masses of the final fermions and the
polarization of the decaying charginos or neutralinos. A
fortran code for the numerical evaluation of all the branch-
ing ratios is made available [41].

For large values of tanβ, the bottom and tau Yukawa
couplings become large, leading to smaller masses of the
tau slepton and bottom squark compared to their first and
second generation partners. At the same time, the Yukawa
couplings of tau and bottom quarks to the Higgs bosons
can become very large. The branching ratios of the de-
cays of the lightest chargino into τν final states and of
the next-to-lightest neutralino into bb̄ and τ+τ− pairs can
be thus strongly enhanced in this scenario. We have illus-
trated this possibility in mSUGRA-type scenarios where
the gaugino masses are unified at the GUT scale, but also
in scenarios where the boundary conditions for binos and
winos are different at this high scale, leading to different
mass patterns for the charginos and neutralinos, which
affect the decay branching ratios. In particular, new de-
cay channels, such as the decay of the lightest chargino
and the next-to-lightest neutralino into gluino and quark–
antiquark final states, open up kinematically and can play
an important role.

When SUSY particles will decay via cascades through
charginos and the heavier neutralinos, the events will con-
tain more τ -leptons and b-quarks, than first and second
generation leptons and quarks. This renders the search for
SUSY particles and the measurement of the SUSY param-
eters, where the electron and muon channels where used,
less straightforward as already discussed in [7]. b-tagging
and the identification of the decays of the tau leptons be-
come then a crucial issue in the search and the study of

8 These effects are being included in a new version of the
program; we thank S. Katsanevas and N. Ghodbane for dis-
cussions on this issue
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the properties of these particles, in particular at hadron
colliders such as the Tevatron and LHC.
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Appendix

In this appendix, we will give the lengthy formulae for
the three-body partial decay widths in the case of finite
masses for the fermion final states (µu �= µd �= 0, with
µf = m2

f/m
2
χi
) and where the polarization of the decaying

chargino or neutralino is taken into account9:

χi(q, nχi
) → χ0

j (p)u(p1)d̄(p2), (A.1)

where q, p, p1 and p2 are the four-momenta of the parti-
cles and nχi is the spin four-vector of the decaying “ino”
defined by nχi · nχi = −1 and nχi · q = 0.

The partial decay width for both chargino and neu-
tralino three-body decays, following the notation given in
Sect. 3, is given by

dΓχi

dûdt̂
=
e4mχi

64(2π)3
Nc

[
dΓV + dΓũ + dΓd̃ + dΓΦ + dΓH1H2

+ dΓV ũ + dΓV d̃ + dΓũd̃ + dΓΦũ + dΓΦd̃

]
, (A.2)

where dΓX is decomposed into the spin-independent part
(which is half of the unpolarized partial decay width) and
the part which depends on the spin four-vector of the de-
caying “ino”:

dΓX =
1
2
dΓU

X + dΓS
X . (A.3)

We will use the reduced Mandelstam variables and spin
vector:

û = (q − p1)2/m2
χi
, t̂ = (q − p2)2/m2

χi
,

and

n = nχi
/mχi

. (A.4)

9 The expressions for three-body decays of charginos and
neutralinos, including the polarization of the initial states, are
available in the literature, see [42], in the case of massless fi-
nal fermions, no Higgs boson exchange and no mixing in the
sfermion sector

Spin-independent part

dΓU
V =

4
(1 + µχ + µu + µd − µV − û− t̂)2

×
{[

(GL
jiV )

2 + (GR
jiV )

2] ([(vfV )2 + (afV )
2
]

×
[
(1 + µχ + µu + µd)(û+ t̂) − û2 − t̂2

− 2µuµd − µu − µd − µχ(2 + µu + µd)
]

+ 2
[
(vfV )

2 − (afV )
2
]√
µuµd[û+ t̂− µu − µd])

+ 2
[
(GL

jiV )
2 − (GR

jiV )
2] vfV afV

× [û2 − t̂2 − (û− t̂)(1 + µχ + µu + µd)

+ (µd − µu)(1 − µχ)] + 4GL
jiVG

R
jiV

√
µχ

× (
[
(vfV )

2 + (afV )
2
]
[û+ t̂− 1 − µχ]

− 4
[
(vfV )

2 − (afV )
2
]√
µuµd)

}
, (A.5)

dΓU
Φ =

∑
k

2
(1 + µχ + µu + µd − µk − û− t̂)2

×
{[

(GL
ijk)

2 + (GR
ijk)

2] ([(vfk )2 + (afk)
2]

×
[
(1 + µχ + µu + µd)(û+ t̂) − (û+ t̂)2

− (1 + µχ)(µu + µd)
]

− 2
[
(vfk )

2 − (afk)
2
]

× √
µuµd[û+ t̂− µu − µd]

)
+ 4GL

ijkG
R
ijk

√
µχ

×
(
[(vfk )

2 + (afk)
2][1 + µχ − û− t̂]

− 2
[
(vfk )

2 − (afk)
2
]√
µuµd

)}
, (A.6)

dΓU
H1H2

=
{(

4vfH1
vfH2

)/(
(1 + µχ + µu + µd − µH1

− û− t̂)(1 + µχ + µu + µd − µH2 − û− t̂)
)}

×
{
2µχ

[
GL

ij1G
R
ij2 +G

L
ij2G

R
ij1
]

× [1 + µχ − 2
√
µuµd − û− t̂]

+
[
GL

ij1G
L
ij2 +G

R
ij1G

R
ij2
] [

(µu + µd)

× (−1 + 2
√
µuµd − µχ) + (û+ t̂)(1 + µχ

+ µu + µd − 2
√
µuµd) − (û+ t̂)2

]}
, (A.7)

dΓU
V Φ =

2∑
k=1

{(
8
)/(

(1 + µχ + µu + µd − µHk
− û− t̂)

× (1 + µχ + µu + µd − µV − û− t̂)
)}

×
{ [
GL

jiVG
R
ijk +G

R
jiVG

L
ijk

] (
[vfkv

f
V + afka

f
V ]

× √
µu(−µχ − µd + û)[vfkvfV − afkafV ]

× √
µd(µu + µχ − t̂)

)
+
[
GL

jiVG
L
ijk +G

R
jiVG

R
ijk

]
×
(
[vfkv

f
V + afka

f
V ]

√
µuµχ(1 + µd − t̂)
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+ [vfkv
f
V − afkafV ]

√
µdµχ(−1 − µu + û)

)}
, (A.8)

dΓU
ũ =

2∑
k,l=1

1
(−µd − µũk

+ t̂)(−µd − µũl
+ t̂)

×
{

− 4au1
√
µχ

√
µuµd + 2au2

√
µχµu(−µd − 1 + t̂)

+ 2au3
√
µd(−µu − µχ + t̂)

+ au4
[−t̂2 + t̂(1 + µχ + µd + µu)

− (µχ + µu)(1 + µd)]
}
, (A.9)

dΓU
d̃

=
2∑

k,l=1

1
(−µu − µd̃k

+ û)(−µu − µd̃l
+ û)

×
{

− 4ad1
√
µχ

√
µuµd + 2ad2

√
µχµd(−µu − 1 + û)

+ 2ad3
√
µu(−µd − µχ + û)

+ ad4[−û2 + û(1 + µχ + µd + µu)

− (µχ + µd)(1 + µu)]
}
, (A.10)

where

af1 = (afjkb
f
jl + a

f
jlb

f
jk)(a

f
ikb

f
il + a

f
ilb

f
ik),

af2 = (afjkb
f
jl + a

f
jlb

f
jk)(a

f
ika

f
il + b

f
ikb

f
il),

af3 = (afjka
f
jl + b

f
jkb

f
jl)(a

f
ikb

f
il + a

f
ilb

f
ik),

af4 = (afjka
f
jl + b

f
jkb

f
jl)(a

f
ika

f
il + b

f
ikb

f
il), (A.11)

dΓU
V d̃

=
2∑

l=1

{(
− 4
)/(

(1 + µχ + µu + µd − µV − û− t̂)

× (−µu − µd̃l
+ û)

)}{
bf1 (jiV )[−(µχ + µd)(µu + 1)

− û2 + û(1 + µu + µd + µχ)]

+ bf2 (jiV )
√
µχ(û+ t̂− 1 − µχ)

+ bf3 (jiV )
√
µuµd(û+ t̂− µu − µd)

− 4bf4 (jiV )
√
µχ

√
µuµd

+ bf5 (jiV )
√
µd(t̂− µχ − µu)

+ bf6 (jiV )
√
µuµχ(t̂− µd − 1)

+ 2bf7 (jiV )
√
µu(û− µχ − µd)

+ 2bf8 (jiV )
√
µχµd(û− µu − 1)

}
, (A.12)

dΓU
V ũ =

2∑
l=1

{(
4
)/(

(1 + µχ + µu + µd − µV − û− t̂)

× (−µd − µũl
+ t̂)

)}{
bf1 (jiV )

√
µχ(û+ t̂− 1 − µχ)

+ bf2 (jiV )[−t̂2 + t̂(1 + µu + µd + µχ)

− (µχ + µu)(µd + 1)] − 4bf3 (jiV )
√
µχ

√
µuµd

+ bf4 (jiV )
√
µuµd(û+ t̂− µu − µd)

+ 2bf5 (jiV )
√
µuµχ(t̂− µd − 1)

+ 2bf6 (jiV )
√
µd(t̂− µχ − µu)

+ bV7 (jiV )
√
µχµd(û− µu − 1)

+ bf8 (jiV )
√
µu(û− µχ − µd)

}
, (A.13)

where

bf1 (ijk) = a
f
ila

f
jlG

R
ijk(v

f
k + afk) + b

f
ilb

f
jlG

L
ijk(v

f
k − afk),

bf2 (ijk) = a
f
ila

f
jlG

L
ijk(v

f
k + afk) + b

f
ilb

f
jlG

R
ijk(v

f
k − afk),

bf3 (ijk) = a
f
ila

f
jlG

R
ijk(v

f
k − afk) + bfilbfjlGL

ijk(v
f
k + afk),

bf4 (ijk) = a
f
ila

f
jlG

L
ijk(v

f
k − afk) + bfilbfjlGR

ijk(v
f
k + afk),

bf5 (ijk) = a
f
jlb

f
ilG

L
ijk(v

f
k + afk) + a

f
ilb

f
jlG

R
ijk(v

f
k − afk),

bf6 (ijk) = a
f
jlb

f
ilG

R
ijk(v

f
k − afk) + afilbfjlGL

ijk(v
f
k + afk),

bf7 (ijk) = a
f
jlb

f
ilG

L
ijk(v

f
k − afk) + afilbfjlGR

ijk(v
f
k + afk),

bf8 (ijk) = a
f
jlb

f
ilG

R
ijk(v

f
k

+ afk) + a
f
ilb

f
jlG

L
ijk(v

f
k − afk), (A.14)

dΓU
ũd̃

=
2∑

k,l=1

{(
− 2
)/(

(−µu − µd̃l
+ û)

× (−µd − µũk
+ t̂)

)}{
[auika

u
jkb

d
ilb

d
jl + a

d
ila

d
jlb

u
ikb

u
jk]

× √
µuµd(û+ t̂− µu − µd)

+ [auika
u
jka

d
ilb

d
jl + b

u
ikb

u
jkb

d
ila

d
jl]

√
µd(t̂− µχ − µu)

+ [aujka
d
ila

d
jlb

u
ik + b

u
jkb

d
ilb

d
jla

u
ik]

√
µχµd(û− µu − 1)

− 2[aujka
d
jlb

u
ikb

d
il + a

u
ika

d
ilb

u
jkb

d
jl]

√
µχ

√
µuµd

+ [aujkb
u
ikb

d
ilb

d
jl + a

u
ika

d
ila

d
jlb

u
jk]

√
µu(û− µχ − µd)

+ [aujka
d
ilb

u
ikb

d
jl + a

u
ika

d
jlb

u
jkb

d
il](ût̂− µχ − µuµd)

+ [auika
u
jka

d
ila

d
jl + b

u
ikb

u
jkb

d
ilb

d
jl]

√
µχ(û+ t̂− µχ − 1)

+ [auika
u
jka

d
jlb

d
il + b

u
ikb

u
jkb

d
jla

d
il]

× √
µχµu(t̂− µd − 1)

}
, (A.15)

dΓU
Φkd̃

=
∑
k,l

{(
2
)/(

(1 + µχ + µu + µd − µΦk
− û− t̂)

× (−µu − µd̃l
+ û)

)}{
bd1(ijk)

√
µχµu(t̂− µd − 1)

+ bd2(ijk)
√
µu(−û+ µχ + µd)

+ bd3(ijk)
√
µχµd(−û+ µu + 1)

+ bd4(ijk)
√
µd(t̂− µχ − µu) + bd5(ijk)

× [û2 + ût̂− û(1 + µu + µd + µχ) + µuµχ + µd]

+ 2bd6(ijk)
√
µχ

√
µuµd

+ bd7(ijk)
√
µuµd(û+ t̂− µu − µd)

+ bd8(ijk)
√
µχ(û+ t̂− µχ − 1)

}
, (A.16)

dΓU
Φkũ

=
∑
k,l

{(
2
)/(

(1 + µχ + µu + µd − µΦk
− û− t̂)

× (−µd − µũl
+ t̂)

)}{
bu1 (ijk)

√
µu(û− µχ − µd)

+ bu2 (ijk)
√
µχµu(−t̂+ 1 + µd)
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+ bu3 (ijk)
√
µd(−t̂+ µu + µχ)

+ bu4 (ijk)
√
µχµd(û− 1 − µu)

+ 2bu5 (ijk)
√
µχ

√
µuµd

+ bu6 (ijk)[ût̂+ t̂
2 − t̂(1 + µu + µd + µχ)

+ µu + µχµd]

+ bu7 (ijk)
√
µχ(û+ t̂− µχ − 1)

+ bu8 (ijk)
√
µuµd(û+ t̂− µu − µd)

}
. (A.17)

Spin-dependent part

dΓS
V =

4
(1 + µχ + µu + µd − µV − û− t̂)2

×
{
[(GL

jiV )
2 − (GR

jiV )
2]
(
[(vfV )

2 + (afV )
2]

× [p1.n(µχ + µd − û) + p2.n(µχ + µu − t̂)]
+ 2[(vfV )

2 − (afV )
2]

√
µuµd(p1.n+ p2.n)

)
+ 2

[
(GL

jiV )
2 + (GR

jiV )
2] vfV afV

× [−p1.n(µχ + µd − û) + p2.n(µχ + µu − t̂)]
+ 4GL

jiVG
R
jiV v

f
V a

f
V

√
µχ × [−p1.n(1 + µd − t̂)

+ p2.n(1 + µu − û)]
}
, (A.18)

dΓS
Φ =

∑
k

2
(1 + µχ + µu + µd − µk − û− t̂)2

×
{
[(GL

ijk)
2 − (GR

ijk)
2][p1.n+ p2.n]

×
(
[(vfk )

2 + (afk)
2][1 + µχ − û− t̂]

− 2[(vfk )
2 − (afk)

2]
√
µuµd

)}
, (A.19)

dΓS
H1H2

=
{(

4vfH1
vfH2

)/(
(1 + µχ + µu + µd − µH1

− û− t̂)(1 + µχ + µu + µd − µH2 − û− t̂)
)}

× [GL
ij1G

L
ij2 −GR

ij1G
R
ij2][p1.n+ p2.n]

× (1 + µχ − 2
√
µuµd − û− t̂), (A.20)

dΓS
V Φ =

2∑
k=1

{(
4
)/(

(1 + µχ + µu + µd − µHk
− û− t̂)

× (1 + µχ + µu + µd − µV − û− t̂)
)}

×
{
[GL

jiVG
R
ijk −GR

jiVG
L
ijk]
(
[vfkv

f
V + afka

f
V ]

√
µu

× [p1.n(t̂− 1 − µd) + p2.n(−û− 1 + µu)]

+ [vfkv
f
V − afkafV ]

√
µd[p1.n(t̂− µd + 1)

+ p2.n(−û+ µu + 1)]
)

+ 2
[
GL

jiVG
L
ijk −GR

jiVG
R
ijk

]√
µχ

×
(

− p2.n√µu[vfkvfV + afka
f
V ]

+ p1.n
√
µd[v

f
kv

f
V − afkafV ]

)}
, (A.21)

dΓS
ũ =

2∑
k,l=1

p2.n

(−µd − µũk
+ t̂)(−µd − µũl

+ t̂)

× {
2au2S

√
µuµχ + au4S(t̂− µχ − µu)

}
, (A.22)

dΓS
d̃

=
2∑

k,l=1

−p1.n
(−µd − µd̃k

+ û)(−µd − µd̃l
+ û)

× {
2ad2S

√
µdµχ + ad4S(û− µχ − µd)

}
, (A.23)

where

af2S = (afjkb
f
jl + a

f
jlb

f
jk)(a

f
ika

f
il − bfikbfil),

af4S = (afjka
f
jl + b

f
jkb

f
jl)(−afikafil + bfikbfil), (A.24)

dΓS
V d̃

=
2∑

l=1

−2
(1 + µχ + µu + µd − µV − û− t̂)(−µu − µd̃l

+ û)

×
{
2bd1S(jiV )p1.n(û− µχ − µd)

+bd2S(jiV )
√
µχ[p1.n(t̂− µd − 1) − p2.n(û− µu − 1)]

−2bd3S(jiV )
√
µuµd(p1.n+ p2.n)

+bd5S(jiV )
√
µd[p1.n(t̂− µd + 1) − p2.n(û− µu − 1)]

−2bd6S(jiV )p2.n
√
µχµu

−4bd8S(jiV )p1.n
√
µχµd

}
, (A.25)

dΓS
V ũ =

2∑
l=1

2
(1 + µχ + µu + µd − µV − û− t̂)(−µd − µũl

+ t̂)

×
{
bu1S(jiV )

√
µχ[p1.n(t̂− 1 − µd) − p2.n(û− 1 − µu)]

+2bu2S(jiV )p2.n(−t̂+ µχ + µu)
+2bu4S(jiV )

√
µuµd(p1.n+ p2.n)

+4bu5S(jiV )
√
µuµχp2.n

+2bu7S(jiV )
√
µχµdp1.n+ bu8S(jiV )

√
µu

×[p1.n(t̂− µd − 1) − p2.n(û− µu + 1)]
}
, (A.26)

with

bf1S(ijk) = a
f
ila

f
jlG

R
ijk(v

f
k + afk) − bfilbfjlGL

ijk(v
f
k − afk),

bf2S(ijk) = a
f
ila

f
jlG

L
ijk(v

f
k + afk) − bfilbfjlGR

ijk(v
f
k − afk),

bf3S(ijk) = a
f
ila

f
jlG

R
ijk(v

f
k − afk) − bfilbfjlGL

ijk(v
f
k + afk),

bf4S(ijk) = a
f
ila

f
jlG

L
ijk(v

f
k − afk) − bfilbfjlGR

ijk(v
f
k + afk),

bf5S(ijk) = a
f
jlb

f
ilG

L
ijk(v

f
k + afk) − afilbfjlGR

ijk(v
f
k − afk),

bf6S(ijk) = a
f
jlb

f
ilG

R
ijk(v

f
k − afk) − afilbfjlGL

ijk(v
f
k + afk),

bf7S(ijk) = a
f
jlb

f
ilG

L
ijk(v

f
k − afk) − afilbfjlGR

ijk(v
f
k + afk),

bf8S(ijk) = a
f
jlb

f
ilG

R
ijk(v

f
k + afk) − afilbfjlGL

ijk(v
f
k − afk),

(A.27)
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dΓS
ũd̃

=
2∑

k,l=1

−1
(−µu − µd̃l

+ û)(−µd − µũk
+ t̂)

×
{
2[auika

u
jkb

d
ilb

d
jl − adiladjlbuikbujk]

√
µuµd

×[p1.n+ p2.n]

+[auika
u
jka

d
ilb

d
jl − buikbujkbdiladjl]

√
µd[p1.n(t̂− µd + 1)

−p2.n(û− µu − 1)]

−2[aujka
d
ila

d
jlb

u
ik − bujkbdilbdjlauik]

√
µχµdp1.n

+[aujkb
u
ikb

d
ilb

d
jl − auikadiladjlbujk]

√
µu

×[p1.n(−t̂+ µd + 1) − p2.n(−û+ µu − 1)]

+[aujka
d
ilb

u
ikb

d
jl − auikadjlbujkbdil]

×[p1.n(−t̂− µd + 1) + p2.n(−û− µu + 1)

+[auika
u
jka

d
ila

d
jl − buikbujkbdilbdjl]

√
µχ

×[p1.n(t̂− µd − 1) − p2.n(û− µu − 1)]

+2[auika
u
jka

d
jlb

d
il − buikbujkbdjladil]

×√
µχµup2.n

}
, (A.28)

dΓS
Φkd̃

=∑
k,l

1
(1 + µχ + µu + µd − µΦk

− û− t̂)(−µu − µd̃l
+ û)

×
{

− 2bd1S(ijk)
√
µχµup2.n

+bd2S(ijk)
√
µu[p1.n(t̂− µd − 1) + p2.n(−û+ µu − 1)]

+2bd3S(ijk)
√
µχµdp1.n

+bd4S(ijk)
√
µd[p1.n(t̂− µd + 1) + p2.n(−û+ µu + 1)]

+bd5S(ijk)

×[p1.n(2û+ t̂− 2µχ − µd − 1) + p2.n(û+ µu − 1)]

+2bd7S(ijk)
√
µuµd[p1.n+ p2.n]

+bd8S(ijk)

×√
µχ[p1.n(−t̂+ µd + 1) + p2.n(û− µu − 1)]

}
, (A.29)

dΓS
Φkũ

=∑
k,l

1
(1 + µχ + µu + µd − µΦk

− û− t̂)(−µd − µũl
+ t̂)

×
{
bu1S(ijk)

√
µu[p1.n(t̂− µd − 1) + p2.n(−û+ µu − 1)]

−2bu2S(ijk)
√
µχµup2.n

+bu3S(ijk)
√
µd[p1.n(t̂− µd + 1) + p2.n(−û+ µu + 1)]

+2bu4S(ijk)
√
µχµdp1.n

+bu6S(ijk)

×[p1.n(−t̂− µd + 1) + p2.n(−û− 2t̂+ 2µχ + µu + 1)]

+bu7 (ijk)
√
µχ[p1.n(−t̂+ µd + 1) + p2.n(û− µu − 1)]

−2bd8S(ijk)
√
µuµd[p1.n+ p2.n]

}
. (A.30)

Phase space

To obtain the integrated partial widths, one has to express
û and t̂ as functions of x1 and x2

û = 1 − x1 + µu, t̂ = 1 − x2 + µd, (A.31)

and integrate over the latter variables, with boundary con-
ditions:

2
√
µu ≤ x1 ≤ 1 + [µu − (

√
µd +

√
µχ)2], (A.32)

smin ≤ x2 ≤ smax, (A.33)

smin =
1
2
(x1 − 2)(x1 − 1 − µd + µχ − µu) − √

∆

1 − x1 + µu
,

smax =
1
2
(x1 − 2)(x1 − 1 − µd + µχ − µu) +

√
∆

1 − x1 + µu
, (A.34)

with

∆ = (µu − x2
1)
[
1
4
µdµχ − (x1 − 1 + µd + µχ − µu)2

]
.

(A.35)
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